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Vector statistical distribution functions are derived for correlated Gaussian fields. The results
may be used to describe the interesting cases of polarization of multiply scattered optical waves
from disordered media. The dependence of the parameters (the elements of the covariant Hermitian
matrix), which characterize the statistics on the incident polarization field, on the incident and
scattered wave-vector direction, and on the medium (with slab geometry) are also given.
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I. INTRODUCTION

In recent years, there has been a resurgence of inter-
est in multiple scattering of light in disordered media.
A scalar wave model for the optical field was success-
fully used in many instances for spatial [1], angular [2, 3],
wavelength [4-6] or time correlation in dynamic systems
[7-9], weak localization [10-17] and antilocalization [18],
the optical memory effect [2, 19-21], its time-reversed
counterpart [22-24], and image reconstructions [25-27].
Recently, it is becoming increasingly apparent, however,
that the vector nature of light plays an important, in-
deed sometimes dominant, role in many diverse phenom-
ena [10, 11, 23, 27-34]. Scattering of (partially) coher-
ent light in highly random media generally produces a
partially polarized speckle pattern. The degree of polar-
ization of the scattered light and other vector statistical
quantities depend on the details of the random medium,
the polarization state of the incident light and its degree
of coherence, and the incident and scattered wave-vector
directions.

Recently, the statistical properties of temporally ran-
dom (partially polarized) light (28, 35, 36] and also of
spatially random multiply scattered waves [29, 30, 37-41]
from random media (speckle patterns) have attracted
much theoretical and experimental interest. The inten-
sity (I) probability distribution function (PDF) for a
multiply scattered scalar field has been long known to
be the Rayleigh distribution P(I) = (I)~! exp(—I/{I}),
where (I) is the ensemble-average intensity. Vector
statistics are characterized by the probabilities of the
change in polarization state for different Feynman paths
which are each built from many single-scattering events
that rotate the incident polarized field randomly. Thus,
an important feature of multiple scattering is to change
the incident polarization state in a statistical fashion.

The statistics of speckle patterns (or temporal random-

|

ness) are related to the covariance matrix J of the scat-
tered light, which depends both upon the properties of
the random medium and the incident polarization state.
In this paper, results are presented for the vector statis-
tics of multiply scattered light based upon explicit calcu-
lations for the covariance matrix.

The scattered polarization state can be described by
groups of three or four variables. First, some of the most
interesting vector variables and the connections between
them are presented. Then, the joint and marginal prob-
abilities of these variables are given, assuming correlated
Gaussian fields. Finally the parameters that characterize
the statistics (the elements of the covariance J matrix)
are developed in terms of the system properties and in-
cident polarization state.

II. THE VECTOR VARIABLES

For a plane wave propagating normal to the z-y plane,
the basic variables are the real and imaginary parts of
the fields B, = ET + iE! and E, = Ey + iE;, where
—o0o < Ept < co. The amplitudes (A4) and phase (§) are

Ar = VI, = /(E})?+ (EL)?, 0< A, <o (la)

Ay =1, =/(E})?+ (E})? 0<Ay<oco (lb)
by = arg(E;), 0< 6, <27 (1e¢)
6 = arg(Ey) — arg(Ey), —2r<é<2rm (1d)

At each point in the scattered field, the polarization is
generally elliptical, with the ellipse variables being given
in terms of A;, Ay,6 (6 does not affect the shape of
this polarization ellipse, but does determine the initial
conditions for the electric-field amplitude and direction
of the principal axes). The amplitudes of the major (4,)
and minor (Ap) axes, and the corresponding intensities
Ia = (Aa)z, Ib = (Ab)Z are

In = (40)? = H{(Ae)? + (4)% + 1/[(42)? — (4,)2]2 + 4(A45)2(A4y)? cos? 6}

(2a)

Iy = (Ap)* = 3{(42) + (4)° - \/[(Az)2 — (Ay)?]? + 4(Az)?(Ay)? cos? 6}

4

(2b)
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_ 1 Ay As Ay | As 2 . 2
tan¢i_2cosé[<Am Ay)i\/(A—m+A_y —4sin§| , (2¢)
: 2A;Aycosé
tan 2y = m— , (Qd)

where0 < I, < o0, 0< I < Iy, and —7/2 < ¢y < 7/2,
with 14 the angles between the major (+) and minor (—)
axes relative to X. Although, the expression for tan 21y
has two solution ¥4, it does not have enough information
to know which is which, so we define 1 to be the angle of
the major or minor (the smaller in absolute value) axis
of the ellipse from %X, and bound it by —n/4 < ¢ < w/4.
In Fig. 1 these variables are shown. To complete this
group, we add the V variable, which is one of the real
Stokes variables,

I= B2+ |Ey[> = (A4:)2 + (4y)% 0<I<oo (3a)
Q=|E:* - |Ey* = (42)* — (4,)% —c0<Q <0

(3b)
U=E,E,+E;E, =2A;A,cos6, —o0o<U <00

(3¢)
V = i(EE, — EzEy) = 2A;Aysiné, —oco<V <oo .

(3d)

The importance of V is its sign, which determines the
polarization rotation direction, right or left handed.

III. THE VECTOR STATISTICS

Assuming Gaussian statistics, in the general case, as
was shown by Goodman [42] and used by Barakat [28],
the basic (field) variables have probabilities which depend
upon correlations between all the four components and
may be written as

P(E}, By, By, Ey)

1 1. . 2 , 2
g eXP( d[J22| |“ + 11| Eyl

-2 Re(jle;Ey)]> , (4)

where d = detJ , Jis the 2 x 2 covariant Hermitian matrix
(Jrz2 = J31 = Ji2 +i412)s

J <Ez|Ez) (EzlE )
J= <<Ey|Ez> <Ey|E§)’>) ’ (5)

and (E;|E;) denotes the ensemble average of E}E;. The
assumption in Eq. (4) is that (ETE]) = (ELE}) = 157,
and (E7E}) = —(ELET) = 1ji,. This assumption is
justified for independent Feynman paths. Instead of the
coherency matrix J, one may use the average Stokes pa-
rameters

(I) =Jju +J=2 , (6a)
(@) =ju —Ja2 (6b)
(U) =2j13 » (6¢)
(V) =251, , (6d)
d=3((* - (@7 - (U= (V)?) , (6e)

and degree of polarization P, given by

_ [, 4detT QP F U2+ (V)2
- ! k@2 (I) ' (66)

In this paper, the use of J is preferred, as the exact form
for its matrix elements will be calculated in Sec. IV for
various situations. The use of the 4 x 4 real Mueller
matrix, which connects the scattered to incident Stokes
parameters, instead of J, is also easily calculated [32]
using Eq. (6).

Using Eq. (4) one can find the joint probabilities of the
variables in Egs. (1)—(3). Starting with the amplitude
(A) and the phase difference (8) one gets

oo 2m
P(AxyAyyé) = L/ 1 T2 d’f‘l d’l‘z/ d91 dgg 6((5 - [92 - 91]) (5(Am - 7'1)
0 0

n2d

1., ) )
x 6(Ay —r2) exp <_E [3227‘3 + j1172 — 2|j12|ri72 cos(62 — 6 — ﬂ)]) ,

(72)
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Ay

FIG. 1. The ellipse variables A, and A, are the ampli-
tudes of the major and minor axes, respectively, while ¢
and _ are the angles between % to those axes. A; and Ay
are the amplitudes of the vector field in % and ¥ directions.

which yields the PDF

11)
———d—A Ay

X exp ( - E[j22(Ax)2 + J11(Ay)?

P(As, Ay,6) = T

—2|j12|Az Ay cos(6 — ﬂ)]) , (7b)

where 8 = arg(ji12). Comparing this with an earlier re-
sult by Barakat [28] we note a slight difference due to the
factor (27 — |6])/(27). However, as Barakat [35] showed,
this difference does not affect the probabilities of cos é§ or
sin §, which are all that is required here.

From Eq. (7), it is easy to get the intensity statistics
of light passed by a polarizer oriented along either z or
y. The joint PDF is

1 1 .
P(I,,I,) = = eXp ( - E[Jzzfx +J11Iy])

n(2elyrT) | ®)

where 0 < I; < 00, 0 < Iy < o0, and Iy() is the mod-
ified Bessel function of the first kind of order zero [43].
The marginal probabilities of I, or I, are the Rayleigh
statistics

P(L) = 75 exp ( -

Iy

) ©
where (I;) = ji11 and (Iy) = j22. As we will see later,
this means that no matter which polarization the inci-
dent field has, the marginal probabilities of the scattered

field in the z or y direction is independent of the corre-
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lation ji2 and has the form of Eq. (9). The scattered
intensity passed by a polarizer in the output beam mak-
ing an arbitrary angle 6 with X (Ex = E, cos8+ E, sin )
gives the same Raylelgh statistics Eq. (9), with (Ix) =
j11 €082 0 + joosin? 6 + |712| cos B'sin 26.

Defining the correlation coefficient between two vari-
ables g, h to the powers m,n as

(g™h™)

Cmn(gr h) = W )

(10)

then |

Crn(Iz,Iy) = ( d. >n2F1 (—n,m+1;1;—l—j—1£) ,
J11Jj22 d

(11)

where 2Fi(a,b;c;z) is the degenerate hypergeometric
function [43].

The most interesting variables are those of the ellipse.
Barakat [28] gives the joint and marginal probabilities
of I, ¢4, and ep, where eg is Barakat’s ellipticity [see
the discussion after Eq. (21)]. Here we give results for
additional ellipse variables which relate to recent experi-
ments on the vector statistics [29,37,41]. The calculation
given here for correlated fields uses the method employed
before by Cohen et al. [29] for independent fields.

The joint probability of I,, I, and ¥+ is given by

Ia~

a

( (j11 +J22)(I +Ib))

c’?‘

1
Pi(Ig, Iy, 1) = wd VT,

X exXp

x cosh (—‘—]dl—z‘ sin 8 \/Ialb)

x cosh[Z(v+)(I, — Ip)] (12)

where 0 < I, < I, < coand Z(¢1) = Jlji—’l cos (sin 214 +
i%l cos 2¢+. From Eq. (12) we see that Py (I,, I, =
I,,v%1) = 0, which means that the probability to have cir-
cular polarization is zero for any system and for any input
polarization (except when d = 0, which corresponds, for
example, to circular input polarization and unit degree
of polarization; see Sec. IV). The term

[cosh (g%li' sin 8 \/IaIb)]
can be written as the sum of the two terms
[exp ( + @ sin 8 s/L;I;,)] s

which are related to the difference in the contribution of
the right- or left-handed polarization rotation direction
to the probability.

Integrating on ¢4 gives
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- 'l—(jn + jo2)(la + Ib)) cosh ( ljdut ng VI, Ib>

xIo ('(l—é——b)' V4lj12|? cos? B + (ju1 — J22)2>

It is important to note the difference between I, I, to
I,,I. The first pair is measured in a fixed direction in
space while the last pair has axes which are not fixed in
space (or time for temporal randomness) but change for
each speckle spot (or instant).

The intensity in a single speckle spot as a function of
the direction of rotation polarizer making an angle ¢ to
the z axes located in the output beam can be written
as I(p) = acos?(p — ¥+) + b. The joint probabilities
of a,b, and ¥4 is easy to determine. Using the relation
a=1,— I, b= I, we get

Pi(Ia =a+bI,= b,'lﬂ:t),
0<a,b< o

Pa,b,dli (a, bv "»[}:t) = { (14)

0 otherwise.

The marginal probabilities of I = I +Iy and a = I,—1I,
can be calculated more easily than those of I, and I (the
marginal probabilities of I, and I, are given in Sec. IV
for spacial forms of the covariance matrix). The PDF of
I for P # 0 is given by

P<I>=exp( gz__;a_zz) )

sinh (é\/ljlﬂz + 30— j22)2>

X (15a)
\/|j12|2 + 2(j11 — Ja2)?
or, in more familiar form,
21
P = 55| (- apm)
21
~en ()| 0

m m
- () (2]
Ji1 + J22 o™ |,

(4d)™+ [D(n/2 + 1)]

T.(v) =
[V2(j11 + Jo2)? — 4(5%2)?]

where T'() is the gamma function[43]. The averaged ma-
jor and minor intensities are

(L) = SN+ 1) (190)

n/2+12F1( +1_+1) 5

(13)
[
while for P =0
41 27
P(I) = e exp (——m) , (15¢)

a result which was obtained previously [28, 44]. On the
other hand,

P(a) = gh( —+/(J11 — J22)? + 4]j12|? cos? ﬂ)

x Ko (-2% \/(ju + j22)% — 4]j12|? sin? ﬁ) ,
(16)

where Ko() is the modified Bessel function of the second
kind of order zero [43].

Instead of an unsolvable integral equation for the mo-
ments of the major (I,) and minor (Ip) intensities, one
can use the connection to the correlation between I and
a(Io=3%[I+a]and I, = [I —a))

@ =g 3 (3) ey,

k=0
(17)
@) = = 1k (7 ) e,
k=0
where (V) = zroasgmy ol and
(18a)
(J11 — J22)% +4(472)?
v2(j11 + j22)? — 4(312)2> (18b)
[
(I = 2D~ T(1)] - (19)

For unpolarized light (P =0) Ti(1) = £(I).
The ellipticity of the ellipse is defined as the ratio of
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the minor to major axes (¢ = Ap/Aqs, 0 < € < 1). Its
joint probability, with 1., is given by

1-¢€) 1 !
Pi(e,¢x) = d [(A+B¢C)2+(A—BZFC)2]

(20)

where A = %(jn +j22)(1+62) , B= %'j12|6 sin 3, and
C = Z(y+)(1 — €%). Note that Py(e = 1,14) does not
depend on 4 as required from symmetry for circular
polarization, which has equal major and minor axes in
any arbitrary direction. Also Py(e = 1,%4) = 0 unless
d = 0. € and ¢4 are independent when 4 is uniformly
distributed (8 = /2 or 37/2 and j11 = ja2).
Integrating on 14 gives

w w_
P = (=) | S + o |
(21a)
where
n=(~1- e2)\/lj12|2cos2ﬁ + (—jlz—;ﬂﬁ ,  (21b)

we =30 +im)(1+&) £2djlsinf . (210)
Our definition for the ellipticity (e) differs from that
of Barakat (eg) (28] where —1 < eg < 1, as eg =
€ sgn(siné), where sgn(sin ) determines the polariza-
tion rotation direction [this is related to the two terms
in each of Egs. (20) and (21a), see the discussion after
Eq. (12)]. The probabilities have the relation P(e) =
P, (€) + P.,(—e¢) [which is equal to the contributions of
the two terms in Eq. (21a)], where P (ep) was also
given before in Eq. (5.9) in Ref. [28]—the last term in
that equation should be

14 2€1 2 2€ 2
1+ €2 1+ €2

P2
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instead of

261 2e
2P| —— — .
(1 +e§) (1+e2)

On the other hand, integrating Eq. (20) on € gives the
marginal probability of ¥4

Py(Ys) = ij{H_ (Gi\;ﬁGﬁ
x[arctan(—fi%%gji)
—arctan(————H ?/%Gi)]} ,
(22)
where Gy (yy) = Q%_-%jgzl + Z(Yy), G-(¥x) =

Uudio) _ 7(yy), H = 2|jiz|sin B, and Q =4G, G- —
H? .

This last result coincides with Barakat’s [28] result for
P, (¢4). Here we point out that the tan2y expres-
sion [Eq. (2)] can give [29] the probabilities which include
14 by using the fact that P(v) = P, (¢) + P_(¢) and
P, (¢) = P_(¢ + m/2) . Note that the term responsible
for breaking the symmetry of Py (¢+) around ¥4 =0 is
just j7,. This is related to the possibility of choosing dif-
ferent coordinate system (x’,y’) instead of X, § by simple
rotation in the z-y plane, to get a transformed covariance
matrix J’ with j7.,, =0.

Fercher and Steeger [30, 39] initially calculated the
statistics of the Stokes variables for independent fields
(Ag, Ay, and 6 independent), and later [40] they re-
calculated these statistics assuming correlations between
Az, Ay but with 6 independent (uniformly distributed).
Barakat [35] gives these statistics assuming that ji, =
0 (8 =0), meaning (V) = 0. Here we give the marginal
probabilities of these variables for fully correlated fields
[using Eq. (4)]. The intensity PDF was given in Eq. (15)
while the PDF of Q is easily derived from Eq. (8),

1 . ) - . .
exp | 55 {Q(Ju — j22) = 1QIv/ (11 + j22)% — 4|J12|2]
2d
P(Q) = S — (23)
V(11 + J22)? — 4]j12]
It is easier to get the marginal probabilities of U and V starting from Eq. (4),
1 . . . .
exp ( -3 [—Uljml cos B+ |U|\/311322 — |j12/? sin® ﬂ] )
PU) = (24)
24/ 1122 — |jr2l? sin? 8
and
1 . — .
exp ( — 5 (=Vljiz|sinf + |VIv/d11d22 — |712|? cos? ﬁ))
P(V) = (25)

2+/j11d22 — |j12]? cos? B

These marginal probabilities coincide with Barakat [35] results for § = 0. Since in general § # 0, the Goodman
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[42] type of multivariable complex Gaussian probability [Eq. (4)] is now seen to have the significance (unlike previous

claims [36]) needed in optics.

The statistics of the last three Stokes variables [Egs. (23)—(25)] can be simply written as the universal function

exp (33 (v ~ IV IPA= P+ 7] )
N R

P(y) =

with moments

n!

") =

on+1, /(12(1 — P?) + (y

where y = @, U, or V. These moments coincide with the
first three cumulants which were given in Ref. [36] for y.

The four Stokes variables are connected by I? = Q%+
U2 + V2 for each point in time and space. The reason
is because of the infinite possibilities of the fields with
the same relative phase § but with different 6, [Eq. (3)]
that give the same Stokes variables which, like the ellipse
variables, do not depend on §,.

As mentioned, the direction, right or left handed, of
the field polarization state is determined by the sign of
V. The parts of the ellipse in the scattered speckle spots
which have right- or left-handed (%) polarization direc-
tion (0 < py < 1) is determined by integrating P(V)
from 0 to oo (uy) or from —oo to 0 (u—),

d
C 2V/d+ ()2 VA + (L)? F i)

or, in form of the Stokes parameters,

(V)2
e = [?‘\/1 TR

(V)2 (V) -
) (\/1 * na-p) T (/1 = P2))] :

(27b)

M+ , (27a)

IV. THE COVARIANCE MATRIX

Until now our calculations were general and did not
assume anything about the source of the randomness
(temporal or speckle patterns) beside the fact that it is
Gaussian correlated. The forms of the Jones and Mueller
matrices were investigated before [45], assuming that the
spatial fluctuations vary more slowly than those of the
temporal fluctuations caused mainly by the input wave.
A simple theory is now given for stationary spatial ran-
domness (speckle patterns). The dependence of the co-
variant Hermitian coherency matrix J (for multiple scat-
tering) on the incident polarization state and the scat-
tering medium with slab geometry for normally incident
and scattered wave vectors is derived using the method
of Ref. [41] (for the general case of arbitrary incident and

(26a)

72 {[\/<I)2(1 =P+ )2+ "+ (CDMVAD2(A - P?) + ()2 - <y>]"“},

(26b)

scattered wave vector see Ref. [32]).

The scattered field (E;), on the output surface, is con-
nected to the incident field (E;), on the input surface,
using the scattering matrix F (where Fj; is the response
of the medium to a unit amplitude input in the 7 direc-
tion which produces a scattered field in the j direction
i,j = ,Y, 2). In this fashion the coherency matrix J in
the general case can be written as

3= (B, E) = (FT 3, #D)F) , (28)

where E; = f*‘TEi and J i= E,E;T is the covariance ma-
trix of the incident field.

We see that J includes correlations between the ele-
ments of F. These correlations can be determined from
the symmetry of the system. In general there are 4 out-
put fields components (in the zy plane) and thus 16 po-
tentially different correlators, but if the random medium
is statistically isotropic, then the average rotational sym-
metry requires that all correlators be real and that only
those correlators in which a given direction (z or y) ap-
pears an even number of times can be nonzero. In addi-
tion, time-reversal symmetry requires (|Fy;|2) = (|Fj;|?)
for all ¢, 7 [46]. It is convenient to normalize all the corre-
lators to the same scale dividing by (|Fyz|?) = (|F,y|?),
which is connected to the average scattered intensity
(I) = (|Ez|?) + (|E,|?). Since the scattered field is built
of many Feynman paths, each term of the F matrix can
be written [47, 48]

oo
Fij = Z [£2%] (TL) exp (’Lq)n) . (29)
n=0
If [44] the amplitudes a;;(n) and the phase ®,, are sta-
tistically independent of each other, and the phases are
uniformly distributed on the primary interval (—m,x),
then the only correlations are between the real parts of
F;;j or between the imaginary parts of F;;. Further, it
is easily seen that (|FJ;|?) = (IF51?), which satisfies the
assumption used in Eq. (4). This leaves three material
parameters {32, 38, 41, 47, 48], which following previous
notation we label

pP= <|Fzy!2> ’
r'= (me|Fyy> s

(30a)
(30b)
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A = (Foy|Fya) - (30c)

There is an exact sum rule which is a result of symmetry
(38, 41]
1-p=T+A. (31)
The effect of an additional optical element on the co-
variance matrix and especially on_the statistics may be
easily determined by multiplying FT, to the right (left),
with the Jones matrix which describes these elements be-
fore (after) the scattering medium. The covariance ma-
trix J can be diagonalized by a matrix transformation,
which is the Jones matrix [49] representation of a coor-

]

(2n)!(ksl, )™

P(L) = 2ksls exp(—k1l) Y 2(dn + D
n=0

1 3 1 3 5
x [1F1 (—;2n+ -;—k11a) “ i3 1By (5;271'*‘ 5;-’“1%)] )

2 2
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dinate rotation, a relative retardation of the two compo-
nents or a combination of both [32,50-54].

A few examples are given to illustrate the use of this
method. First, for linearly polarized light in the % direc-
tion which is normally incident and normally scattered
to the slab surfaces,

- (5 )

where (|Fyz|2)(1+p) = (I) and P = %—;ﬁ. Using Eq. (32)
all the results of Ref. [29] are obtained. The statistics of
I, and I, for arbitrary p, is given by

(33a)

where 1F1(a; b; ¢) is the degenerate hypergeometric function [43], and

0 ! 2n
n=0

n!)222n

X [iTs) Wy jamassa(kale) = Wenoijmirjathi)]

where W, g(z) is the Whittaker function [43] and

o = (1+0)°
YT (D)
g, — (1+0)°
T e
2
k3=(~127)<~;’>—) (33c)

A typical joint probability P(e, ¢¥4) [Eq. (20)] is plot-
ted in Fig. 2 for p = 1/2. The most probable value is for
linear polarization (¢ = 0) in the z direction (4 = 0),
corresponding to a partial memory of the incident polar-
ization direction.

Suppose that the incident polarization is elliptical with
major and minor axes in the %, ¥ direction [E; = (1/7,1)]
and the incident and scattered wave vector is normal to
the surface of the slab (Z). Then the scattered covariance
matrix is

= 1+op
I= <I>(1 +0)(1+ p)
o+p /o (T — A)
y 1+op V(e +p)1 +0p)
—iv/o(I' — A) 1

V(o +p)1+0p)
(34)

so jio =0 and

- ol = A)? (0 +p)(1 +0p)
P‘\/1+4 (1+p)%(1+0)? '

(33b)

Figure 3 shows a typical joint distribution function of
€, ¥+ [Eq. (20)] for 0 > 1 (major input polarization axes
in the z direction) while Fig. 4 give these statistics for
o < 1 (the input major axes in the y direction). Again
the most probable value (¢ > 0 while ¢4 = 0 in Fig. 3
and ¥4 = +m/2 in Fig. 4) shows that the input polar-

2
R
N
I
© 89
o o
\E
N
3
\ai:
11/ (in T units)
FIG. 2. The joint distribution of €1+ [Eq. (20)] for the

explicit covariance matrix in Eq. (32), where p = 1/2. The
most probable output polarization is for € = 0 (linear polar-
ization state) in the z direction (¢+ = 0).
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o0 0.24
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\Vi

FIG. 3. The joint distribution of €, ¥4 [Eq. (20)] for ellip-
tic polarization in the input with major axes in the = direction
(o0 < 1) for the explicit covariance matrix: ji1 = 1, ja2 = 1/2,
jfz =1/2, and ji; = 0.

ization state is “remembered” in the output beam.
For circular polarization (¢ = 1) in the input,

jz%(—ip zf)

where P = (I' — A)/(1 + p) is the degree of polarization.
The marginal probabilities of the major and minor axes
in the output beam are given by

(35)

048 0.73 097

PEY)

o0 0.24

G,

FIG. 4. The joint distribution of €, 3+ [Eq. (20)] for ellip-
tic polarization in the input with major axes in the y direction
(o > 1) for the explicit covariance matrix: ji11 = 1/2, ja2 = 1,
dla = 1/2, and ji; = 0.
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P(Ia) = F2(Ia) + FS(Ia) , (36&)
P(Iy) = Fa(Iy) + F3(Iy) — F1(Ip) , (36b)
N —2z 2z(1 — P2)
Al = 3 oo (77 [ D
(I)(1 - P?)
V= 6o
1 2z(1 — P)
Fy(a) = 3Fi(a) [erf( m_(.H_P))
. 2z(1 + P)
vty =) (364
2 4z
o) = gy (=t =)
. 4z P
X [Psmh (W)
where erf() is the error function [43]. For P =

1, Fi(z) = 0, meaning that I, and I, have the same
PDF form while for P # 1, P(l, = 0) = 0 and
P(I, — 0) ~ (I;)"Y2. Using Eq. (36), the marginal
probabilities of the major (4,) and minor (A) ampli-
tudes are shown in Fig. 5 for different values of degree
of polarization. Also Pi(¢¥+) = 1/m as required from
symmetry.
The correlation Cp,p, (I, Ip) is related to

— P2)‘m+‘n+1

1
) = (e

N PR (m 4 n 42k 4 1)!
% kz_o (2%)!
[Rmnk(n +k+ 3/2)
(2n + 2k + 1)
_Rfmnk(n +k+ 5/2)]
(2n + 2k + 3) ’

where Rpynk(z) = 2F1(1,m + n + 2k + 2;x;1/2). The
PDF of € is

(36£)

1
(1 4+ €2 4+ 2P¢)?
P S
(1 + €2 — 2P¢)?

P(e) = (1 - PY)(1 - e‘*’)[

} . (37)

P(e) has a maximum for € = €y, which is a function
of P. For P < 1/2, €max = 0, meaning that it is more
probable to have linear polarization than any other po-
larization. For P > 1/2, €max is finite, and goes to 1
when there is no scattering at all, in which case P = 1.
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FIG. 5. The statistics of the (a) major and (b) minor am-

plitudes is plotted using Eq. (36) for different degrees of po-
larization values. P = 0.2 for the solid line, while P = 0.7 for
the dashed—double-dotted line, P = 0.9 for the dashed line,
and the dash-dotted line shows the statistics for P = 0.99.
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FIG. 6. €max, Which characterize the maximum of P(e),

vs the degree of polarization P for the covariance matrix in
the form of Eq. (35) (ji1 = j22 and ji, = 0). The inset
show the statistics of the ellipticity [Eq. (37)], for the same
covariance matrix. For the dash-line P = 0, while P = 0.5
for the dash-dotted line and P = 0.9 for the solid line.
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€max 85 & function of P is shown in Fig. 6, while in the
inset, P(e) versus € [Eq. (37)], is plotted, for different
values of P. pu+ = 3(1 + P), meaning that at least half
of the speckles spots “remember” the incident polariza-
tion direction and that it goes linearly with the degree of
polarization.

The statistics of circular input polarization for P = 0
is the same as for p = 1 when the input light is linearly
polarized, where in the general case this is the statistics
when the scattered light is unpolarized and does not de-
pend on the incident polarization.

Circular polarization state in the input could be
achieved with linear polarization followed by a quarter-
wave plate whose fast axis is in 45° degree to the incident
wave polarization direction. An interesting question is
what will happen if the quarter-wave plate is moved af-
ter the scattering media. The calculation give the same
covariance matrix as Eq. (35) but with P = %—1;,%%.

Rotating the input direction of a linearly input po-
larization, with normally incident and scattered wave-
vector, E; = (cos p, sin ), with no polarizer in the out-
put, the output intensity for any speckle spot (not just
for the averaged) is

1
I(p) = acos®(p—a)+b = Acos® p+ §B sin 2¢p+C'sin’ ¢ |
(38)

where the first form was given in [41] and where measure-
ments for p = 1 there performed. More experimental re-
sults [37] were given later for arbitrary p with the sugges-
tion that p is not the only parameter needed to describe
the statistics. In Eq. (38) 0 < a, b < 00,0 < a <,
0<AC <00, —00 < B <00, and

a=+(A-C)2+B? , (39a)

b=-§-[A+C—\/(A—C)2+BZ] , (39b)

a = 1 arctan (A ; C) ; (39¢)
also

A= |F$II2 + IFyx|2 ) (403,)

B = 2Re(FouFly + FuyFl) (40b)

C= |Fzy|2 + IFyy|2 : (40¢)

The axes ¢ (¢ = 0) is chosen arbitrarily, which teaches
a few points about the statistics. First we should un-
derstand that a,b are coordinate (¢) independent while
a, A, B, and C change with the choice of coordinate sys-
tem. From symmetry this means that
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Pla) = — (41a)
Py prci(A',B',C'") = Papc(A',B',C') = Pagc(A(A,B',C"),B(A',B',C"),C(4",B',C")) , (41b)
where
A(A',B',C") = A’ cos? ¥ — 1 B'sin20 + C’'sin*9
(41c)
B(A',B',C") = £(A’sin29 + B’ cos 29 — C’sin 29)
(41d)
C(A',B',C") = A'sin® ¥ — L B'sin 29 + C’ cos® ¥, (41e)

for arbitrary ¥, and where A, B, C are measured for the coordinate ¢, and A’, B’,C’ are measured for the coordinate
¢’ (the angle between @ to ¢’ is 9). In Eq. (41b) the use of the unity Jacobian of the transformation was taken into

8(A,BC) _
account (W = 1)-

Assuming Gaussian fields we have

( Tz z:n’ :z:y’Fzzy’ yx y.r’ yy! y) Pl( Tz xa:v yy! ) P2( Ty wy?F;z7F;z) ’ (42&)
i (1 + ,0) 1 1 2 2 I r
Py(Fiy Fouy Fyyy Fyy) = D 7 P — g [ Feal® + | Fy [ + 20(FL, By, + Fi Fi)) (42b)
1 1
Pa(FEy, iy Fle Fia) = S exp( =L pl1Fal? + |Fial?) + 20(FL P + FiyFi) ) (420)
where d; = (I)1 L* and dy = (I )221:_—?2.
As a first result for the statistics of these A, B, C variables, the joint probability of A and C is
_ (1+p)? 1
P(A,C) = G ()2 exp d1 [A+C]
2m 2n
A AC m+n+1
<2 (@) (@) e
0 2 [((m+n+ 1)
1 p 1 p
X1F1 n+1 m+n—+—2 — A 1F1 n+1;m+n+2; ——=]C}). (43)
di dy dy dy
The marginal probabilities of both A and C have the same functional form
(1 + p) A O 2m A0 ] Am+ntl 1 p
P —_— - = —_— = ————F 1; 2 ——-—=—14
(4) = RE exp ) 2 ama (m+n+1)!1 {n+1l,m+n+2 A , (44)
[
where 1 F(a; b; ¢) is the degenerate hypergeometric func- Zero.

tion [43]. For p=1 (I' = A =0) A and C are indepen-
dent and have the joint probability of

e () weee ()

The PDF of B was found only for p=1 (I' = A =0)

o o (- 22) (‘Z+8). as

B is highly correlated to A and C even for p = 1.
Because B includes multiples [Eq. (40b)] of indepen-

dent Gaussian variables, its odd moments vanish, mean-

ing that for arbitrary p its PDF is symmetric around

P(A,C) = (45)

P(B) =

For p=0, I' =1, and A = 0 (no scattering media at
all) P(B) = 6§(B) and A = C = I;, meaning that the
measured intensity is constant [Eq. (38)] and equal to the
incident one (I;).

V. SUMMARY

In this paper the vector statistics of partially polar-
ized light of spatially or temporally randomness was in-
vestigated assuming Gaussian correlated fields. Statis-
tics were found for the ellipse variables which depend on
the 2 x 2 covariance Hermitian matrix. The real part
of the covariance matrix crossed term is responsible for
breaking the symmetry of the PDF of 1+ and U around
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¥4+ = 0 and U = 0, respectively, while the imaginary part
breaks the symmetry of P(V) around V = 0. The PDF
of the four Stokes variables was found also, where the last
three of them @, U, and V have a universal probability
function form.

The explicit form of the covariance matrix for scattered
wave from random media (speckle patterns) with slab
geometry and for different polarization state of the input
beam was given.

In general the statistics depend on four parameters.
For linearly (or circularly) input polarization, the statis-
tics were found to be two-parameter dependent, where
one is connected to the input beam intensity ({I)) and
the second is P the degree of polarization. In case of
elliptic input polarization state the system needs three
parameters to describe the statistics, while the degree of
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polarization depends also on the input minor to major
polarization field ratio.

The rotator of the input linearly polarization direction
was also investigated, the statistics defined by an extra
parameters (I' or A) beside p, as was predicted experi-
mentally [37]. Still, in this problem there are many open
questions, caused by mathematical difficulties, which re-
main to be solved. These statistics offer possibilities for
investigating the polarization of multiple-scattering pro-
cesses from random media.
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